欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

TensorFlow實(shí)現(xiàn)iris數(shù)據(jù)集線性回歸-創(chuàng)新互聯(lián)

本文將遍歷批量數(shù)據(jù)點(diǎn)并讓TensorFlow更新斜率和y截距。這次將使用Scikit Learn的內(nèi)建iris數(shù)據(jù)集。特別地,我們將用數(shù)據(jù)點(diǎn)(x值代表花瓣寬度,y值代表花瓣長度)找到最優(yōu)直線。選擇這兩種特征是因?yàn)樗鼈兙哂芯€性關(guān)系,在后續(xù)結(jié)果中將會看到。本文將使用L2正則損失函數(shù)。

創(chuàng)新互聯(lián)公司-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價(jià)比遼中網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫,直接使用。一站式遼中網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋遼中地區(qū)。費(fèi)用合理售后完善,十年實(shí)體公司更值得信賴。

# 用TensorFlow實(shí)現(xiàn)線性回歸算法
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve linear regression.
# y = Ax + b
#
# We will use the iris data, specifically:
# y = Sepal Length
# x = Petal Width

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()

# Create graph
sess = tf.Session()

# Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])

# 批量大小
batch_size = 25

# Initialize 占位符
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# 模型變量
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

# 增加線性模型,y=Ax+b
model_output = tf.add(tf.matmul(x_data, A), b)

# 聲明L2損失函數(shù),其為批量損失的平均值。
loss = tf.reduce_mean(tf.square(y_target - model_output))

# 聲明優(yōu)化器 學(xué)習(xí)率設(shè)為0.05
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(loss)

# 初始化變量
init = tf.global_variables_initializer()
sess.run(init)

# 批量訓(xùn)練遍歷迭代
# 迭代100次,每25次迭代輸出變量值和損失值
loss_vec = []
for i in range(100):
  rand_index = np.random.choice(len(x_vals), size=batch_size)
  rand_x = np.transpose([x_vals[rand_index]])
  rand_y = np.transpose([y_vals[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  loss_vec.append(temp_loss)
  if (i+1)%25==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
    print('Loss = ' + str(temp_loss))

# 抽取系數(shù)
[slope] = sess.run(A)
[y_intercept] = sess.run(b)

# 創(chuàng)建最佳擬合直線
best_fit = []
for i in x_vals:
 best_fit.append(slope*i+y_intercept)

# 繪制兩幅圖
# 擬合的直線
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3)
plt.legend(loc='upper left')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()

# Plot loss over time
# 迭代100次的L2正則損失函數(shù)
plt.plot(loss_vec, 'k-')
plt.title('L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.show()

文章標(biāo)題:TensorFlow實(shí)現(xiàn)iris數(shù)據(jù)集線性回歸-創(chuàng)新互聯(lián)
文章轉(zhuǎn)載:http://www.aaarwkj.com/article20/peijo.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供軟件開發(fā)、靜態(tài)網(wǎng)站、品牌網(wǎng)站制作做網(wǎng)站、網(wǎng)站內(nèi)鏈、企業(yè)網(wǎng)站制作

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站制作
亚洲日本韩国福利久久| 中国成熟女人毛茸茸视频| 国产一区二区三区不卡视频| 岛国大片日韩在线观看| 高清免费欧美大片在线观看| 日韩精品一区高清视频| 欧美日韩性性在线观看 | 大片天天看菲色亚洲黄色| 伊人激情一区二区三区| 欧美一区二区三区爽| 精精国产xxxx视频在线不卡| 亚洲欧美日韩性生活视频| 肉肉开房天天操夜夜操| 高潮国产精品一区二区| 中文字幕日韩一区二区| 丝袜啪啪啪麻豆白虎内射| 超碰欧美性欧美最猛性| 91精品中综合久久久久| 亚洲丰满性感美女av| 亚洲av永久精品桃色| 岛国大片日韩在线观看| 人妻猛烈进入中文字幕| 伊人久久综在合线亚洲| 浮力草草日韩欧美三级| 国产麻豆91精品女同性恋| 啊啊…嗯嗯…用力免费观看视频| 91高清国产在线播放| 亚洲一区欧美二区日韩三区| 丰满人妻被猛烈进入中文版| 亚州欧美精品一区二区| 中文字幕av不卡一区| 传媒视频在线观看网站| 日韩免费中文视频不卡| 欧美一区二区三区高清在线| 少妇精品久久久一区二区三区| 日本区一区二区三高清视频| 在线观看日韩精品电影| 欧美国产日韩一区二区三区视频| 亚洲国产成人午夜精品| 熟妞人妻精品一区二区视频| 高颜值紧身牛仔裤国产精品|