欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

python pandas模塊函數(shù)

Python Pandas模塊函數(shù)是一種用于數(shù)據(jù)分析和處理的強(qiáng)大工具。它提供了許多功能,包括數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)分組、數(shù)據(jù)聚合等。本文將介紹一些常用的Python Pandas模塊函數(shù),以及它們在數(shù)據(jù)處理中的應(yīng)用。

創(chuàng)新互聯(lián)長期為上千多家客戶提供的網(wǎng)站建設(shè)服務(wù),團(tuán)隊(duì)從業(yè)經(jīng)驗(yàn)10年,關(guān)注不同地域、不同群體,并針對不同對象提供差異化的產(chǎn)品和服務(wù);打造開放共贏平臺,與合作伙伴共同營造健康的互聯(lián)網(wǎng)生態(tài)環(huán)境。為鏡湖企業(yè)提供專業(yè)的成都網(wǎng)站制作、做網(wǎng)站,鏡湖網(wǎng)站改版等技術(shù)服務(wù)。擁有十多年豐富建站經(jīng)驗(yàn)和眾多成功案例,為您定制開發(fā)。

一、數(shù)據(jù)結(jié)構(gòu)

1. Series

Series是一種一維數(shù)組,可以存儲任意數(shù)據(jù)類型。它類似于Python的字典,其中每個元素都有一個標(biāo)簽,稱為索引。創(chuàng)建一個Series對象的方法如下:

`python

import pandas as pd

s = pd.Series([1, 2, 3, 4, 5])

print(s)

輸出結(jié)果為:

0 1

1 2

2 3

3 4

4 5

dtype: int64

2. DataFrame

DataFrame是一種二維表格數(shù)據(jù)結(jié)構(gòu),每列可以是不同的數(shù)據(jù)類型。它類似于Python中的字典,其中每個鍵對應(yīng)一個列。創(chuàng)建一個DataFrame對象的方法如下:

`python

import pandas as pd

data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],

'age': [25, 30, 35, 40],

'gender': ['F', 'M', 'M', 'M']}

df = pd.DataFrame(data)

print(df)

輸出結(jié)果為:

name age gender

0 Alice 25 F

1 Bob 30 M

2 Charlie 35 M

3 David 40 M

二、數(shù)據(jù)清洗和轉(zhuǎn)換

1. 讀取數(shù)據(jù)

Pandas可以讀取多種格式的數(shù)據(jù)文件,包括CSV、Excel、SQL、JSON等。讀取CSV文件的方法如下:

`python

import pandas as pd

df = pd.read_csv('data.csv')

print(df)

其中,'data.csv'是CSV文件的路徑。

2. 缺失值處理

在數(shù)據(jù)分析中,經(jīng)常會遇到缺失值。Pandas提供了一些函數(shù)來處理缺失值,如fillna()和dropna()。fillna()函數(shù)可以用指定的值填充缺失值,dropna()函數(shù)可以刪除包含缺失值的行或列。例如:

`python

import pandas as pd

import numpy as np

data = {'name': ['Alice', 'Bob', np.nan, 'David'],

'age': [25, 30, np.nan, 40],

'gender': ['F', 'M', 'M', 'M']}

df = pd.DataFrame(data)

df.fillna(0, inplace=True) # 用0填充缺失值

df.dropna(axis=0, inplace=True) # 刪除包含缺失值的行

print(df)

輸出結(jié)果為:

name age gender

0 Alice 25.0 F

1 Bob 30.0 M

3 David 40.0 M

3. 數(shù)據(jù)類型轉(zhuǎn)換

Pandas可以將數(shù)據(jù)類型轉(zhuǎn)換為指定的類型,如將字符串類型轉(zhuǎn)換為數(shù)值類型。astype()函數(shù)可以實(shí)現(xiàn)數(shù)據(jù)類型轉(zhuǎn)換。例如:

`python

import pandas as pd

data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],

'age': ['25', '30', '35', '40'],

'gender': ['F', 'M', 'M', 'M']}

df = pd.DataFrame(data)

df['age'] = df['age'].astype(int) # 將字符串類型轉(zhuǎn)換為整型

print(df)

輸出結(jié)果為:

name age gender

0 Alice 25 F

1 Bob 30 M

2 Charlie 35 M

3 David 40 M

三、數(shù)據(jù)分組和聚合

1. 分組

Pandas可以將數(shù)據(jù)按照指定的列進(jìn)行分組,以便進(jìn)行聚合操作。groupby()函數(shù)可以實(shí)現(xiàn)數(shù)據(jù)分組。例如:

`python

import pandas as pd

data = {'name': ['Alice', 'Bob', 'Charlie', 'David', 'Emily', 'Frank'],

'age': [25, 30, 35, 40, 45, 50],

'gender': ['F', 'M', 'M', 'M', 'F', 'M'],

'salary': [5000, 6000, 7000, 8000, 9000, 10000]}

df = pd.DataFrame(data)

grouped = df.groupby('gender') # 按照gender列進(jìn)行分組

for name, group in grouped:

print(name)

print(group)

輸出結(jié)果為:

name age gender salary

0 Alice 25 F 5000

4 Emily 45 F 9000

name age gender salary

1 Bob 30 M 6000

2 Charlie 35 M 7000

3 David 40 M 8000

5 Frank 50 M 10000

2. 聚合

在對數(shù)據(jù)進(jìn)行分組后,可以對每個分組進(jìn)行聚合操作,如求和、求平均值等。agg()函數(shù)可以實(shí)現(xiàn)數(shù)據(jù)聚合。例如:

`python

import pandas as pd

data = {'name': ['Alice', 'Bob', 'Charlie', 'David', 'Emily', 'Frank'],

'age': [25, 30, 35, 40, 45, 50],

'gender': ['F', 'M', 'M', 'M', 'F', 'M'],

'salary': [5000, 6000, 7000, 8000, 9000, 10000]}

df = pd.DataFrame(data)

grouped = df.groupby('gender') # 按照gender列進(jìn)行分組

result = grouped['salary'].agg(['sum', 'mean', 'max', 'min']) # 對salary列進(jìn)行聚合操作

print(result)

輸出結(jié)果為:

sum mean max min

gender

F 14000 7000 9000 5000

M 31000 7750 10000 6000

擴(kuò)展問答:

1. Pandas常用的數(shù)據(jù)結(jié)構(gòu)有哪些?

答:Pandas常用的數(shù)據(jù)結(jié)構(gòu)有Series和DataFrame。

2. Pandas如何讀取CSV文件?

答:可以使用read_csv()函數(shù)讀取CSV文件。

3. Pandas如何處理缺失值?

答:可以使用fillna()函數(shù)填充缺失值,使用dropna()函數(shù)刪除包含缺失值的行或列。

4. Pandas如何進(jìn)行數(shù)據(jù)類型轉(zhuǎn)換?

答:可以使用astype()函數(shù)將數(shù)據(jù)類型轉(zhuǎn)換為指定的類型。

5. Pandas如何進(jìn)行數(shù)據(jù)分組和聚合?

答:可以使用groupby()函數(shù)對數(shù)據(jù)進(jìn)行分組,使用agg()函數(shù)對每個分組進(jìn)行聚合操作。

網(wǎng)頁標(biāo)題:python pandas模塊函數(shù)
文章轉(zhuǎn)載:http://www.aaarwkj.com/article38/dgpiosp.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供電子商務(wù)網(wǎng)站維護(hù)、標(biāo)簽優(yōu)化服務(wù)器托管、關(guān)鍵詞優(yōu)化、網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站建設(shè)網(wǎng)站維護(hù)公司
国产精品伊人久久综合网| 亚洲和欧洲一码二码区视频| 日日嗨av特一级黄淫片| 欧美国产日本日韩在线黄| 日本大片在线一区二区三区| 欧美日韩av在线一区二区| 中文精品字幕人妻熟女小妇| 欧美日韩天堂一区二区| 在线观看高清欧美国产视频| 后入蜜桃臀美女在线观看| 99久热在线精品视频| 日本人妻久久中文字幕| 国产精品一区巨乳人妻| 2021亚洲精品午夜精品国产| 欧美一区二区欧美精品| 国产a天堂一区二区专区| 国产精品_国产精品_k频道| 未满十八禁止观看免费| 久久亚洲春色中文字幕| 国产福利在线观看网站| 久久成人免费在线电影| 天堂中文在线官网在线| 本色啪啪人妻夜嗨嗨av| 国产老熟女高潮一区二区| 国产精品亚洲综合制服日韩| 欧美国产日韩激情在线| 国产毛片一区二区三区二区| 成人性生交视频免费看| 蜜桃av在线播放视频| 蜜臀av中文字幕在线| 久久亚洲精品国产精品黑人| 中文字幕九七精品乱码| 一区二区三区深夜福利| 亚洲国产中文一区二区久久| 天天干夜夜操操操操| 日韩高清午夜片在线观看| 人妻精品中文字幕一区二区在线| 日韩新片免费专区在线| 内地精品露脸自拍视频| 91精品国产在线观看| 亚洲精品aa片在线观看国产|