欧美一级特黄大片做受成人-亚洲成人一区二区电影-激情熟女一区二区三区-日韩专区欧美专区国产专区

python機(jī)器學(xué)習(xí)之KNN分類算法-創(chuàng)新互聯(lián)

本文為大家分享了python機(jī)器學(xué)習(xí)之KNN分類算法,供大家參考,具體內(nèi)容如下

站在用戶的角度思考問題,與客戶深入溝通,找到萬山網(wǎng)站設(shè)計與萬山網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗,讓設(shè)計與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個性化、用戶體驗好的作品,建站類型包括:網(wǎng)站制作、做網(wǎng)站、企業(yè)官網(wǎng)、英文網(wǎng)站、手機(jī)端網(wǎng)站、網(wǎng)站推廣、國際域名空間、網(wǎng)絡(luò)空間、企業(yè)郵箱。業(yè)務(wù)覆蓋萬山地區(qū)。

1、KNN分類算法

KNN分類算法(K-Nearest-Neighbors Classification),又叫K近鄰算法,是一個概念極其簡單,而分類效果又很優(yōu)秀的分類算法。

他的核心思想就是,要確定測試樣本屬于哪一類,就尋找所有訓(xùn)練樣本中與該測試樣本“距離”最近的前K個樣本,然后看這K個樣本大部分屬于哪一類,那么就認(rèn)為這個測試樣本也屬于哪一類。簡單的說就是讓最相似的K個樣本來投票決定。

這里所說的距離,一般最常用的就是多維空間的歐式距離。這里的維度指特征維度,即樣本有幾個特征就屬于幾維。

KNN示意圖如下所示。(圖片來源:百度百科)

python機(jī)器學(xué)習(xí)之KNN分類算法

上圖中要確定測試樣本綠色屬于藍(lán)色還是紅色。

顯然,當(dāng)K=3時,將以1:2的投票結(jié)果分類于紅色;而K=5時,將以3:2的投票結(jié)果分類于藍(lán)色。

KNN算法簡單有效,但沒有優(yōu)化的暴力法效率容易達(dá)到瓶頸。如樣本個數(shù)為N,特征維度為D的時候,該算法時間復(fù)雜度呈O(DN)增長。

所以通常KNN的實現(xiàn)會把訓(xùn)練數(shù)據(jù)構(gòu)建成K-D Tree(K-dimensional tree),構(gòu)建過程很快,甚至不用計算D維歐氏距離,而搜索速度高達(dá)O(D*log(N))。

不過當(dāng)D維度過高,會產(chǎn)生所謂的”維度災(zāi)難“,最終效率會降低到與暴力法一樣。

因此通常D>20以后,最好使用更高效率的Ball-Tree,其時間復(fù)雜度為O(D*log(N))。

人們經(jīng)過長期的實踐發(fā)現(xiàn)KNN算法雖然簡單,但能處理大規(guī)模的數(shù)據(jù)分類,尤其適用于樣本分類邊界不規(guī)則的情況。最重要的是該算法是很多高級機(jī)器學(xué)習(xí)算法的基礎(chǔ)。

當(dāng)然,KNN算法也存在一切問題。比如如果訓(xùn)練數(shù)據(jù)大部分都屬于某一類,投票算法就有很大問題了。這時候就需要考慮設(shè)計每個投票者票的權(quán)重了。

2、測試數(shù)據(jù)

測試數(shù)據(jù)的格式仍然和前面使用的身高體重數(shù)據(jù)一致。不過數(shù)據(jù)增加了一些:

1.5 40 thin
1.5 50 fat
1.5 60 fat
1.6 40 thin
1.6 50 thin
1.6 60 fat
1.6 70 fat
1.7 50 thin
1.7 60 thin
1.7 70 fat
1.7 80 fat
1.8 60 thin
1.8 70 thin
1.8 80 fat
1.8 90 fat
1.9 80 thin
1.9 90 fat


3、Python代碼

scikit-learn提供了優(yōu)秀的KNN算法支持。使用Python代碼如下:

# -*- coding: utf-8 -*-
import numpy as np
from sklearn import neighbors
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt
 
''' 數(shù)據(jù)讀入 '''
data = []
labels = []
with open("data\\1.txt") as ifile:
 for line in ifile:
  tokens = line.strip().split(' ')
  data.append([float(tk) for tk in tokens[:-1]])
  labels.append(tokens[-1])
x = np.array(data)
labels = np.array(labels)
y = np.zeros(labels.shape)
 
''' 標(biāo)簽轉(zhuǎn)換為0/1 '''
y[labels=='fat']=1
 
''' 拆分訓(xùn)練數(shù)據(jù)與測試數(shù)據(jù) '''
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
 
''' 創(chuàng)建網(wǎng)格以方便繪制 '''
h = .01
x_min, x_max = x[:, 0].min() - 0.1, x[:, 0].max() + 0.1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
   np.arange(y_min, y_max, h))
 
''' 訓(xùn)練KNN分類器 '''
clf = neighbors.KNeighborsClassifier(algorithm='kd_tree')
clf.fit(x_train, y_train)
 
'''測試結(jié)果的打印'''
answer = clf.predict(x)
print(x)
print(answer)
print(y)
print(np.mean( answer == y))
 
'''準(zhǔn)確率與召回率'''
precision, recall, thresholds = precision_recall_curve(y_train, clf.predict(x_train))
answer = clf.predict_proba(x)[:,1]
print(classification_report(y, answer, target_names = ['thin', 'fat']))
 
''' 將整個測試空間的分類結(jié)果用不同顏色區(qū)分開'''
answer = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:,1]
z = answer.reshape(xx.shape)
plt.contourf(xx, yy, z, cmap=plt.cm.Paired, alpha=0.8)
 
''' 繪制訓(xùn)練樣本 '''
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=plt.cm.Paired)
plt.xlabel(u'身高')
plt.ylabel(u'體重')
plt.show()

當(dāng)前題目:python機(jī)器學(xué)習(xí)之KNN分類算法-創(chuàng)新互聯(lián)
文章路徑:http://www.aaarwkj.com/article48/gjohp.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站排名、網(wǎng)站內(nèi)鏈、標(biāo)簽優(yōu)化、做網(wǎng)站移動網(wǎng)站建設(shè)、網(wǎng)站改版

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站建設(shè)網(wǎng)站維護(hù)公司
手机在线观看av网站| 久久精品国产亚洲av波多| 精品视频在线观看传媒| 国产传媒网约在线观看| 每日更新中文字幕粉嫩av| 人妻av天堂综合一区| 少妇高潮惨叫久久麻豆传| 欧美激情一区二区亚洲专区| 日韩人妻一区中文字幕| 国产亚洲一区激情小说| 中文字幕九七精品乱码| 亚洲午夜一区二区精品 | 青草免费在线播放视频| 说中文字幕的黄色大网站| 久久精品中文字幕有码日本道| 国产精品亚洲伦理在线| 亚洲视频一直看一直爽| 国产精品一区二区三区 在线| 色婷婷区二区三区四区| 欧美日韩另类激情免费| 91亚洲蜜桃内射后入在线观看| 一区二区三区视频观看在线| 亚洲码欧美码一区二区三区| 囗交囗爆吞精在线视频| 黄色大全欧美在线观看| 日韩亚洲毛片全在线播放| 欧美国内日本一区二区| 日韩欧美国产精品福利| 东京成人热av男人的天堂| 亚洲成色在线综合剧情网站 | 国产乱肥老妇国产一区二| 日韩精品一区福利合集| 91午夜福利国产精品| 四虎国产精品久久久久久网址| 欧美亚洲另类不卡在线| 欧美精品中出一区二区三区| 美腿丝袜清纯唯美亚洲另类| 国产三级传媒在线观看| 风间由美亚洲一区二区三区| 四虎影院成人精品久久| 麻豆影片在线免费观看|